87.15.19 problem 19

Internal problem ID [23567]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 115
Problem number : 19
Date solved : Friday, October 03, 2025 at 08:03:46 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-2 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 36
Order:=6; 
ode:=diff(diff(diff(y(x),x),x),x)-2*x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{4}}{12}\right ) y \left (0\right )+\left (x +\frac {1}{30} x^{5}\right ) y^{\prime }\left (0\right )+\frac {y^{\prime \prime }\left (0\right ) x^{2}}{2}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 37
ode=D[y[x],{x,3}]+2*x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (x-\frac {x^5}{30}\right )+c_1 \left (1-\frac {x^4}{12}\right )+\frac {c_3 x^2}{2} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
Series solution not supported for ode of order > 2