Internal
problem
ID
[23557]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
115
Problem
number
:
9
Date
solved
:
Friday, October 03, 2025 at 08:03:46 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(diff(y(x),x),x),x)+4*diff(diff(y(x),x),x)+2*diff(y(x),x)-x^3*y(x) = 0; ic:=[y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0) = 0]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=D[y[x],{x,3}]+4*D[y[x],{x,2}]+2*D[y[x],x]-x^3*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==1,Derivative[2][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
Series solution not supported for ode of order > 2