87.15.2 problem 2

Internal problem ID [23550]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 115
Problem number : 2
Date solved : Friday, October 03, 2025 at 08:03:45 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-y \sin \left (x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ y^{\prime \prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 12
Order:=6; 
ode:=diff(diff(diff(y(x),x),x),x)-sin(x)*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = x +\frac {1}{60} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 12
ode=D[y[x],{x,3}]-Sin[x]*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {x^5}{60}+x \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
Series solution not supported for ode of order > 2