Internal
problem
ID
[23494]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
100
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 09:42:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x+3)^2*diff(diff(y(x),x),x)+3*(x+3)*diff(y(x),x)+5*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+3)^2*D[y[x],{x,2}]+3*(x+3)*D[y[x],x]+5*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 3)**2*Derivative(y(x), (x, 2)) + (3*x + 9)*Derivative(y(x), x) + 5*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)