Internal
problem
ID
[23284]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
1.
Elementary
methods.
First
order
differential
equations.
Exercise
at
page
37
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 09:28:33 PM
CAS
classification
:
[_Bernoulli]
ode:=x*diff(y(x),x)-1/2*y(x)/ln(x) = y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]/(2*Log[x])==y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - y(x)**2 - y(x)/(2*log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)