86.7.1 problem 1

Internal problem ID [23148]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5c at page 83
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:23:29 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-9 y&=5 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-9*y(x) = 5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} c_2 +{\mathrm e}^{-3 x} c_1 -\frac {5}{9} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 25
ode=D[y[x],{x,2}]-9*y[x]==5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{3 x}+c_2 e^{-3 x}-\frac {5}{9} \end{align*}
Sympy. Time used: 0.051 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*y(x) + Derivative(y(x), (x, 2)) - 5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{3 x} - \frac {5}{9} \]