86.6.8 problem 8

Internal problem ID [23141]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5b at page 77
Problem number : 8
Date solved : Thursday, October 02, 2025 at 09:23:26 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x)-3*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {3 x}{2}} \left (c_1 \sin \left (\frac {\sqrt {7}\, x}{2}\right )+c_2 \cos \left (\frac {\sqrt {7}\, x}{2}\right )\right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 22
ode=D[y[x],{x,2}]-3*D[y[x],x]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_2 e^{5 x}+c_1\right ) \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{2 x \left (1 - \sqrt {2}\right )} + C_{2} e^{2 x \left (1 + \sqrt {2}\right )} \]