86.5.19 problem 19

Internal problem ID [23133]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5a at page 74
Problem number : 19
Date solved : Thursday, October 02, 2025 at 09:23:15 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+8 y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+8*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{4 x \sqrt {3}}+c_2 \right ) {\mathrm e}^{-2 \left (2+\sqrt {3}\right ) x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 34
ode=D[y[x],{x,2}]+8*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 \left (2+\sqrt {3}\right ) x} \left (c_2 e^{4 \sqrt {3} x}+c_1\right ) \end{align*}
Sympy. Time used: 0.127 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + 8*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{2 x \left (-2 + \sqrt {3}\right )} + C_{2} e^{- 2 x \left (\sqrt {3} + 2\right )} \]