86.5.10 problem 10

Internal problem ID [23124]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5a at page 74
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:23:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=35*diff(diff(y(x),x),x)-29*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {3 x}{7}}+c_2 \,{\mathrm e}^{\frac {2 x}{5}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 26
ode=35*D[y[x],{x,2}]-29*D[y[x],x]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{3 x/7}+c_2 e^{2 x/5} \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) - 29*Derivative(y(x), x) + 35*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {2 x}{5}} + C_{2} e^{\frac {3 x}{7}} \]