86.5.6 problem 6

Internal problem ID [23120]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 5. Linear equations of the second order with constant coefficients. Exercise 5a at page 74
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:23:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.016 (sec). Leaf size: 17
ode:=8*diff(diff(y(x),x),x)-10*diff(y(x),x)+3*y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{\frac {x}{2}}-2 \,{\mathrm e}^{\frac {3 x}{4}} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 24
ode=8*D[y[x],{x,2}]-10*D[y[x],x]+3*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 e^{x/2}-2 e^{3 x/4} \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) - 10*Derivative(y(x), x) + 8*Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - 2 e^{\frac {3 x}{4}} + 3 e^{\frac {x}{2}} \]