Internal
problem
ID
[23047]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
11.
Matrix
eigenvalue
methods
for
systems
of
linear
differential
equations.
A
Exercises
at
page
509
Problem
number
:
8
(a)
Date
solved
:
Thursday, October 02, 2025 at 09:17:49 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+3*x(t)-2*y(t) = exp(-t), diff(y(t),t)-x(t)+4*y(t) = sin(2*t)]; dsolve(ode);
ode={D[x[t],{t,1}]+3*x[t]-2*y[t]==Exp[-t], D[y[t],{t,1}]-x[t]+4*y[t]==Sin[2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(3*x(t) - 2*y(t) + Derivative(x(t), t) - exp(-t),0),Eq(-x(t) + 4*y(t) - sin(2*t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)