Internal
problem
ID
[23039]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
A
Exercises
at
page
499
Problem
number
:
2
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:17:42 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+2*y(t) = 4*exp(2*t), x(t)+diff(y(t),t)-y(t) = 2*exp(2*t)]; ic:=[x(0) = 7, y(0) = 1]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]+2*y[t]==4*Exp[2*t], x[t]+ D[y[t],{t,1}]-y[t]==2*Exp[2*t]}; ic={x[0]==7,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*y(t) - 4*exp(2*t) + Derivative(x(t), t),0),Eq(x(t) - y(t) - 2*exp(2*t) + Derivative(y(t), t),0)] ics = {x(0): 7, y(0): 1} dsolve(ode,func=[x(t),y(t)],ics=ics)