85.37.9 problem 2 (c)

Internal problem ID [22752]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 4. Linear differential equations. A Exercises at page 175
Problem number : 2 (c)
Date solved : Thursday, October 02, 2025 at 09:14:21 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-16 y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=0 \\ y^{\prime \prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 5
ode:=diff(diff(diff(y(x),x),x),x)-16*diff(y(x),x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.02 (sec). Leaf size: 6
ode=D[y[x],{x,3}]-16*D[y[x],x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 0 \end{align*}
Sympy. Time used: 0.124 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-16*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 0 \]