Internal
problem
ID
[22382]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
27.
Solutions
of
systems
of
linear
differential
equations
with
constant
coefficients
by
Laplace
transform.
Supplementary
problems
Problem
number
:
27.13
Date
solved
:
Sunday, October 12, 2025 at 05:52:22 AM
CAS
classification
:
With initial conditions
ode:=[diff(diff(w(t),t),t)+y(t)+z(t) = -1, w(t)+diff(diff(y(t),t),t)-z(t) = 0, -w(t)-diff(y(t),t)+diff(diff(z(t),t),t) = 0]; ic:=[w(0) = 0, D(w)(0) = 1, z(0) = -1, D(z)(0) = 1, y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)]);
ode={D[w[t],{t,2}]+y[t]+z[t]==-1,w[t]+D[y[t],{t,2}]-z[t]==0,-w[t]-D[y[t],t]+D[z[t],{t,2}]==0}; ic={w[0]==0,Derivative[1][w][0] ==1,z[0]==-1,Derivative[1][z][0] ==1,y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},{w[t],z[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") w = Function("w") z = Function("z") y = Function("y") ode=[Eq(y(t) + z(t) + Derivative(w(t), (t, 2)) + 1,0),Eq(w(t) - z(t) + Derivative(y(t), (t, 2)),0),Eq(-w(t) - Derivative(y(t), t) + Derivative(z(t), (t, 2)),0)] ics = {w(0): 0, Subs(Derivative(w(t), t), t, 0): 1, z(0): -1, Subs(Derivative(z(t), t), t, 0): 1, y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=[w(t),z(t),y(t)],ics=ics)
ValueError : Exceeds the limit (4300 digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit