Internal
problem
ID
[22302]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
19.
Power
series
solutions
about
an
ordinary
point.
Solved
problems.
Page
98
Problem
number
:
19.4
Date
solved
:
Thursday, October 02, 2025 at 08:37:18 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+(2*x-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=-1);
ode=D[y[x],{x,2}]+x*D[y[x],x]+(2*x-1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (2*x - 1)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-1,n=6)