84.12.2 problem 6.7

Internal problem ID [22144]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 6. Exact first-order differential equations. Supplementary problems
Problem number : 6.7
Date solved : Thursday, October 02, 2025 at 08:32:23 PM
CAS classification : [_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y+2 x y^{3}+\left (1+3 x^{2} y^{2}+x \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 285
ode:=y(x)+2*x*y(x)^3+(1+3*x^2*y(x)^2+x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{2}/{3}}-12 x -12}{6 x \left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{1}/{3}}} \\ y &= -\frac {\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{2}/{3}}+\left (i \sqrt {3}-1\right ) \left (x +1\right )}{\left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{1}/{3}} x} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{2}/{3}}+12 \left (x +1\right ) \left (1+i \sqrt {3}\right )}{12 \left (12 \sqrt {3}\, \sqrt {4+4 x^{3}+\left (27 c_1^{2}+12\right ) x^{2}+12 x}-108 c_1 x \right )^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 33.583 (sec). Leaf size: 340
ode=(y[x]+2*x*y[x]^3)+(1+3*x^2*y[x]^2+x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}{3 \sqrt [3]{2} x^2}-\frac {\sqrt [3]{2} (x+1)}{\sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) (x+1)}{2^{2/3} \sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}{6 \sqrt [3]{2} x^2}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) (x+1)}{2^{2/3} \sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 c_1 x^4+\sqrt {108 (x+1)^3 x^6+729 c_1{}^2 x^8}}}{6 \sqrt [3]{2} x^2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**3 + (3*x**2*y(x)**2 + x + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out