84.8.1 problem 4.10

Internal problem ID [22113]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 4. Separable first-order differential equations. Supplementary problems
Problem number : 4.10
Date solved : Thursday, October 02, 2025 at 08:25:18 PM
CAS classification : [_separable]

\begin{align*} y y^{\prime }+x&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 27
ode:=x+y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+c_1} \\ y &= -\sqrt {-x^{2}+c_1} \\ \end{align*}
Mathematica. Time used: 0.055 (sec). Leaf size: 39
ode=x+y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {-x^2+2 c_1}\\ y(x)&\to \sqrt {-x^2+2 c_1} \end{align*}
Sympy. Time used: 0.193 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - x^{2}}\right ] \]