83.10.8 problem 8

Internal problem ID [21977]
Book : Differential Equations By Kaj L. Nielsen. Second edition 1966. Barnes and nobel. 66-28306
Section : Chapter IV. First order differential equations of higher degree. Ex. XI at page 69
Problem number : 8
Date solved : Thursday, October 02, 2025 at 08:20:59 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x +y {y^{\prime }}^{2}&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 101
ode:=x+y(x)*diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x +\frac {x c_1}{\left (\frac {-\sqrt {-y x}+y}{y}\right )^{{2}/{3}} \left (\frac {-x +\sqrt {-y x}+y}{y}\right )^{{2}/{3}} y} &= 0 \\ x +\frac {x c_1}{\left (\frac {\sqrt {-y x}+y}{y}\right )^{{2}/{3}} \left (\frac {-x -\sqrt {-y x}+y}{y}\right )^{{2}/{3}} y} &= 0 \\ \end{align*}
Mathematica. Time used: 3.381 (sec). Leaf size: 49
ode=x+y[x]*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \left (\frac {3 c_1}{2}-i x^{3/2}\right ){}^{2/3}\\ y(x)&\to \left (i x^{3/2}+\frac {3 c_1}{2}\right ){}^{2/3} \end{align*}
Sympy. Time used: 30.560 (sec). Leaf size: 374
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}\right ] \]