Internal
problem
ID
[21933]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
III.
First
order
differential
equations
of
the
first
degree.
Ex.
V
at
page
42
Problem
number
:
2
(a)
Date
solved
:
Thursday, October 02, 2025 at 08:15:39 PM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=4*x-2*y(x)+3+(5*y(x)-2*x+7)*diff(y(x),x) = 0; ic:=[y(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(4*x-2*y[x]+3 )+(5*y[x]-2*x+7 )*D[y[x],x]==0; ic={y[1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x + (-2*x + 5*y(x) + 7)*Derivative(y(x), x) - 2*y(x) + 3,0) ics = {y(1): 2} dsolve(ode,func=y(x),ics=ics)