Internal
problem
ID
[21773]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
24.
Power
series
about
an
ordinary
point.
Page
719
Problem
number
:
24-11
(b)
Date
solved
:
Thursday, October 02, 2025 at 08:02:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=(1+x^2)*D[y[x],{x,2}]+(2*x)*D[y[x],x]-2*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 2*y(x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)