82.2.12 problem 24-11 (b)

Internal problem ID [21773]
Book : The Differential Equations Problem Solver. VOL. II. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 24. Power series about an ordinary point. Page 719
Problem number : 24-11 (b)
Date solved : Thursday, October 02, 2025 at 08:02:00 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
Order:=6; 
ode:=(x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1+x^{2}-\frac {1}{3} x^{4}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 15
ode=(1+x^2)*D[y[x],{x,2}]+(2*x)*D[y[x],x]-2*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^4}{3}+x^2+1 \]
Sympy. Time used: 0.250 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{4}}{3} + x^{2} + 1\right ) + C_{1} x + O\left (x^{6}\right ) \]