Internal
problem
ID
[21771]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
24.
Power
series
about
an
ordinary
point.
Page
719
Problem
number
:
24-10
Date
solved
:
Thursday, October 02, 2025 at 08:01:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=(x^2+2)*diff(diff(y(x),x),x)+(2*x+2/x)*diff(y(x),x)+2*x^2*y(x) = (4*x^2+2*x+10)/x^4; dsolve(ode,y(x),type='series',x=0);
ode=(x^2+2)*D[y[x],{x,2}]+(2*x+2/x)*D[y[x],x]+2*x^2*y[x]==(4*x^2+2*x+10)/x^4; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*y(x) + (2*x + 2/x)*Derivative(y(x), x) + (x**2 + 2)*Derivative(y(x), (x, 2)) - (4*x**2 + 2*x + 10)/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE 2*x**2*y(x) + (2*x + 2/x)*Derivative(y(x), x) + (x**2 + 2)*Derivative(y(x), (x, 2)) - (4*x**2 + 2*x + 10)/x**4 does not match hint 2nd_power_series_regular