81.12.13 problem 16-14

Internal problem ID [21666]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 16. Variation of Parameters. Page 375.
Problem number : 16-14
Date solved : Thursday, October 02, 2025 at 07:59:38 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 22
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+11*diff(y(x),x)-6*y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (\frac {x}{2}+c_1 +c_2 \,{\mathrm e}^{x}+c_3 \,{\mathrm e}^{2 x}\right ) \]
Mathematica. Time used: 0.006 (sec). Leaf size: 37
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+11*D[y[x],x]-6*y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} e^x \left (2 x+4 c_2 e^x+4 c_3 e^{2 x}+3+4 c_1\right ) \end{align*}
Sympy. Time used: 0.137 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) - exp(x) + 11*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x} + C_{3} e^{2 x} + \frac {x}{2}\right ) e^{x} \]