Internal
problem
ID
[21589]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
9.
Clairaut
Equation.
Page
133.
Problem
number
:
9-6
Date
solved
:
Thursday, October 02, 2025 at 07:58:44 PM
CAS
classification
:
[_quadrature]
ode:=1/2*ln(1+diff(y(x),x)^2)-ln(diff(y(x),x))-x+2 = 0; dsolve(ode,y(x), singsol=all);
ode=1/2*Log[1+D[y[x],x]^2]-Log[D[y[x],x]]-x+2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + log(Derivative(y(x), x)**2 + 1)/2 - log(Derivative(y(x), x)) + 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)