80.11.16 problem 15 (a)

Internal problem ID [21424]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 12. Stability theory. Excercise 12.6 at page 270
Problem number : 15 (a)
Date solved : Thursday, October 02, 2025 at 07:31:26 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }+x&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 37
ode:=diff(diff(diff(x(t),t),t),t)+x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 \,{\mathrm e}^{-t}+c_2 \,{\mathrm e}^{\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right )+c_3 \,{\mathrm e}^{\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 56
ode=D[x[t],{t,3}]+x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-t} \left (c_3 e^{3 t/2} \cos \left (\frac {\sqrt {3} t}{2}\right )+c_2 e^{3 t/2} \sin \left (\frac {\sqrt {3} t}{2}\right )+c_1\right ) \end{align*}
Sympy. Time used: 0.073 (sec). Leaf size: 36
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) + Derivative(x(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{3} e^{- t} + \left (C_{1} \sin {\left (\frac {\sqrt {3} t}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} t}{2} \right )}\right ) e^{\frac {t}{2}} \]