80.6.10 problem 10

Internal problem ID [21300]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 6. Higher order linear equations. Excercise 6.5 at page 133
Problem number : 10
Date solved : Friday, October 03, 2025 at 07:49:28 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (\infty \right )&=0 \\ \end{align*}
Maple. Time used: 3.041 (sec). Leaf size: 561
ode:=diff(diff(diff(x(t),t),t),t)+a*diff(diff(x(t),t),t)+b*diff(x(t),t)+c*x(t) = 0; 
ic:=[x(infinity) = 0]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = \munderset {\textit {\_a} \rightarrow \infty }{\operatorname {lim}}{\mathrm e}^{-\frac {t a}{3}} \left (-c_1 \,{\mathrm e}^{\frac {\left (-\frac {i \sqrt {3}\, \textit {\_a}}{4}-\frac {3 \textit {\_a}}{4}+\frac {t}{2}\right ) \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{2}/{3}}+\left (i \sqrt {3}\, \textit {\_a} -3 \textit {\_a} +2 t \right ) \left (a^{2}-3 b \right )}{3 \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{1}/{3}}}}-c_2 \,{\mathrm e}^{-\frac {\left (-\frac {i \sqrt {3}\, \textit {\_a}}{4}+\frac {3 \textit {\_a}}{4}-\frac {t}{2}\right ) \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{2}/{3}}+\left (i \sqrt {3}\, \textit {\_a} +3 \textit {\_a} -2 t \right ) \left (a^{2}-3 b \right )}{3 \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{1}/{3}}}}+c_1 \,{\mathrm e}^{\frac {\left (\frac {\left (-i \sqrt {3}-1\right ) \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{2}/{3}}}{4}+\left (i \sqrt {3}-1\right ) \left (a^{2}-3 b \right )\right ) t}{3 \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{1}/{3}}}}+c_2 \,{\mathrm e}^{\frac {\left (\frac {\left (i \sqrt {3}-1\right ) \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{2}/{3}}}{4}+\left (-i \sqrt {3}-1\right ) \left (a^{2}-3 b \right )\right ) t}{3 \left (36 b a -108 c -8 a^{3}+12 \sqrt {12 c \,a^{3}-3 b^{2} a^{2}-54 b a c +12 b^{3}+81 c^{2}}\right )^{{1}/{3}}}}\right ) \]
Mathematica
ode=D[x[t],{t,3}]+a*D[x[t],{t,2}]+b*D[x[t],t]+c*x[t]==0; 
ic={x[Infinity]==0}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 

{}

Sympy
from sympy import * 
t = symbols("t") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
x = Function("x") 
ode = Eq(a*Derivative(x(t), (t, 2)) + b*Derivative(x(t), t) + c*x(t) + Derivative(x(t), (t, 3)),0) 
ics = {x(oo): 0} 
dsolve(ode,func=x(t),ics=ics)
 
False