Internal
problem
ID
[21289]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
5.
Second
order
equations.
Excercise
5.9
at
page
119
Problem
number
:
D
19
Date
solved
:
Thursday, October 02, 2025 at 07:27:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(x(t),t),t)+3*t*diff(x(t),t)-3*x(t) = t^2; dsolve(ode,x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]+3*t*D[x[t],t]-3*x[t]==t^2; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) - t**2 + 3*t*Derivative(x(t), t) - 3*x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)