Internal
problem
ID
[21287]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
5.
Second
order
equations.
Excercise
5.9
at
page
119
Problem
number
:
D
17
Date
solved
:
Thursday, October 02, 2025 at 07:27:49 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=t^2*diff(diff(x(t),t),t)-t*diff(x(t),t)-3*x(t) = 0; ic:=[x(1) = 0, D(x)(1) = 1]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]-t*D[x[t],t]-3*x[t]==0; ic={x[1]==0,Derivative[1][x][1] == 1}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) - t*Derivative(x(t), t) - 3*x(t),0) ics = {x(1): 0, Subs(Derivative(x(t), t), t, 1): 1} dsolve(ode,func=x(t),ics=ics)