80.5.51 problem D 1

Internal problem ID [21272]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 5. Second order equations. Excercise 5.9 at page 119
Problem number : D 1
Date solved : Thursday, October 02, 2025 at 07:27:33 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5}&=0 \end{align*}
Maple
ode:=diff(diff(x(t),t),t)+(t^5+1)/(t^4+5)*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[x[t],{t,2}]+(1+t^5)/(5+t^4)*x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(Derivative(x(t), (t, 2)) + (t**5 + 1)*x(t)/(t**4 + 5),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
False