80.5.5 problem B 3

Internal problem ID [21226]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 5. Second order equations. Excercise 5.9 at page 119
Problem number : B 3
Date solved : Thursday, October 02, 2025 at 07:27:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=diff(diff(x(t),t),t)+8*diff(x(t),t)+16*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = {\mathrm e}^{-4 t} \left (c_2 t +c_1 \right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 18
ode=D[x[t],{t,2}]+8*D[x[t],t]+16*x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-4 t} (c_2 t+c_1) \end{align*}
Sympy. Time used: 0.085 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(16*x(t) + 8*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (C_{1} + C_{2} t\right ) e^{- 4 t} \]