80.5.1 problem A2 (c)

Internal problem ID [21222]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 5. Second order equations. Excercise 5.9 at page 119
Problem number : A2 (c)
Date solved : Thursday, October 02, 2025 at 07:27:03 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \end{align*}
Maple
ode:=diff(diff(x(t),t),t)+p(t)*diff(x(t),t)+q(t)*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[x[t],{t,2}]+p[t]*D[x[t],t]+q[t]*x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
p = Function("p") 
q = Function("q") 
ode = Eq(p(t)*Derivative(x(t), t) + q(t)*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
TypeError : cannot determine truth value of Relational: t > t