Internal
problem
ID
[20990]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
2,
Second
order
ODEs.
Problems
section
2.6
Problem
number
:
15.d
Date
solved
:
Thursday, October 02, 2025 at 07:01:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 3*x^2-x; ic:=[y(1) = Pi, D(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*D[y[x],x]+2*y[x]==3*x^2-x; ic={y[1]==Pi,Derivative[1][y][1] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x**2 - 2*x*Derivative(y(x), x) - x + 2*y(x),0) ics = {y(1): pi, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics)