Internal
problem
ID
[20304]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
end
of
chapter
at
page
120
Problem
number
:
Ex.
3
Date
solved
:
Thursday, October 02, 2025 at 05:41:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-2/x*diff(y(x),x)+(n^2+2/x^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2/x*D[y[x],x]+(n^2+2/x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq((n**2 + 2/x**2)*y(x) + Derivative(y(x), (x, 2)) - 2*Derivative(y(x), x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)