Internal
problem
ID
[855]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.3,
second
order
linear
equations.
Page
323
Problem
number
:
22
Date
solved
:
Tuesday, September 30, 2025 at 04:16:12 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=9*diff(diff(y(x),x),x)+6*diff(y(x),x)+4*y(x) = 0; ic:=[y(0) = 3, D(y)(0) = 4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=9*D[y[x],{x,2}]+6*D[y[x],x]+4*y[x]==0; ic={y[0]==3,Derivative[1][y][0] ==4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 6*Derivative(y(x), x) + 9*Derivative(y(x), (x, 2)),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): 4} dsolve(ode,func=y(x),ics=ics)