76.5.1 problem Ex. 1
Internal
problem
ID
[20022]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
II.
Equations
of
the
first
order
and
of
the
first
degree.
Exercises
at
page
20
Problem
number
:
Ex.
1
Date
solved
:
Thursday, October 02, 2025 at 05:14:49 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} x^{2}-4 y x -2 y^{2}+\left (y^{2}-4 y x -2 x^{2}\right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.013 (sec). Leaf size: 439
ode:=x^2-4*x*y(x)-2*y(x)^2+(y(x)^2-4*x*y(x)-2*x^2)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {\frac {\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}{2}+\frac {12 x^{2} c_1^{2}}{\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}+2 c_1 x}{c_1} \\
y &= \frac {-\frac {\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}{4}-\frac {6 x^{2} c_1^{2}}{\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}+2 c_1 x -\frac {i \sqrt {3}\, \left (-24 x^{2} c_1^{2}+\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{2}/{3}}\right )}{4 \left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}}}{c_1} \\
y &= -\frac {24 i \sqrt {3}\, c_1^{2} x^{2}-i \sqrt {3}\, \left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{2}/{3}}+24 x^{2} c_1^{2}-8 c_1 x \left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}}+\left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{2}/{3}}}{4 \left (108 x^{3} c_1^{3}+4+4 \sqrt {-135 x^{6} c_1^{6}+54 x^{3} c_1^{3}+1}\right )^{{1}/{3}} c_1} \\
\end{align*}
✓ Mathematica. Time used: 31.029 (sec). Leaf size: 730
ode=(x^2-4*x*y[x]-2*y[x]^2)+(y[x]^2-4*x*y[x]-2*x^2)*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}+\frac {6 \sqrt [3]{2} x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x\\ y(x)&\to \frac {4 \sqrt [3]{2} 3^{2/3} x^2+4 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x+2^{2/3} \sqrt [3]{3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}}\\ y(x)&\to \frac {2\ 3^{2/3} x^2 \text {Root}\left [\text {$\#$1}^3-432\&,3\right ]+12 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x-3 \sqrt [3]{-3} 2^{2/3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3}}{6 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}}\\ y(x)&\to \frac {\sqrt [3]{3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3} \text {Root}\left [2 \text {$\#$1}^3-1\&,3\right ]-2 \sqrt [3]{-2} 3^{2/3} x^2+2 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x}{\sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}} \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x**2 - 4*x*y(x) + (-2*x**2 - 4*x*y(x) + y(x)**2)*Derivative(y(x), x) - 2*y(x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out