75.7.10 problem 11

Internal problem ID [19992]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VI. Certain particular forms of equations. Exercises at page 74
Problem number : 11
Date solved : Thursday, October 02, 2025 at 05:06:14 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} x&={y^{\prime }}^{2}+y \end{align*}
Maple. Time used: 0.035 (sec). Leaf size: 21
ode:=x = y(x)+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -{\left (\operatorname {LambertW}\left (c_1 \,{\mathrm e}^{-\frac {x}{2}-1}\right )+1\right )}^{2}+x \]
Mathematica. Time used: 10.28 (sec). Leaf size: 98
ode=x==y[x]+D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2-2 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )+x-1\\ y(x)&\to -W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2-2 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right )+x-1\\ y(x)&\to x-1 \end{align*}
Sympy. Time used: 1.146 (sec). Leaf size: 54
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - y(x) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ C_{1} + x - 2 \sqrt {x - y{\left (x \right )}} + 2 \log {\left (\sqrt {x - y{\left (x \right )}} + 1 \right )} = 0, \ C_{1} + x + 2 \sqrt {x - y{\left (x \right )}} + 2 \log {\left (\sqrt {x - y{\left (x \right )}} - 1 \right )} = 0\right ] \]