Internal
problem
ID
[835]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.1,
second
order
linear
equations.
Page
299
Problem
number
:
54
Date
solved
:
Tuesday, September 30, 2025 at 04:15:57 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)-3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+8*x*D[y[x],x]-3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) - 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)