2.7.22 problem 38

Internal problem ID [828]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 38
Date solved : Tuesday, September 30, 2025 at 04:15:52 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=4*diff(diff(y(x),x),x)+8*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x}+c_2 \right ) {\mathrm e}^{-\frac {3 x}{2}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 22
ode=4*D[y[x],{x,2}]+8*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-3 x/2} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) + 8*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{- x}\right ) e^{- \frac {x}{2}} \]