72.12.26 problem 5 (b)

Internal problem ID [19599]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 17. The Homogeneous Equation with Constant Coefficients. Problems at page 125
Problem number : 5 (b)
Date solved : Thursday, October 02, 2025 at 04:40:29 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=2*x^2*diff(diff(y(x),x),x)+10*x*diff(y(x),x)+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 +c_2 \ln \left (x \right )}{x^{2}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}] +10*x*D[y[x],x]+8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 c_2 \log (x)+c_1}{x^2} \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 10*x*Derivative(y(x), x) + 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + C_{2} \log {\left (x \right )}}{x^{2}} \]