72.9.7 problem 5 (a)

Internal problem ID [19541]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 14. Introduction. Problems at page 112
Problem number : 5 (a)
Date solved : Thursday, October 02, 2025 at 04:39:56 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=diff(diff(y(x),x),x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x}+c_1 x +c_2 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 15
ode=D[y[x],{x,2}] ==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x+c_2 x+c_1 \end{align*}
Sympy. Time used: 0.021 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + e^{x} \]