Internal
problem
ID
[19513]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Miscellaneous
Problems
for
Chapter
2.
Problems
at
page
99
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 04:34:22 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=diff(y(x),x) = 2*x*y(x)*exp(x^2/y(x)^2)/(y(x)^2+y(x)^2*exp(x^2/y(x)^2)+2*x^2*exp(x^2/y(x)^2)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(2*x*y[x]*Exp[ (x/y[x])^2 ])/( y[x]^2+y[x]^2 *Exp[ (x/y[x])^2 ] + 2*x^2* Exp[ (x/y[x])^2] ); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)*exp(x**2/y(x)**2)/(2*x**2*exp(x**2/y(x)**2) + y(x)**2*exp(x**2/y(x)**2) + y(x)**2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)