72.8.15 problem 15

Internal problem ID [19499]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 15
Date solved : Thursday, October 02, 2025 at 04:32:32 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _exact]

\begin{align*} \cos \left (x +y\right )&=x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 14
ode:=cos(x+y(x)) = x*sin(x+y(x))+x*sin(x+y(x))*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x +\arccos \left (\frac {c_1}{x}\right ) \]
Mathematica. Time used: 7.763 (sec). Leaf size: 35
ode=Cos[x+y[x]]==x*Sin[x+y[x]]+x*Sin[x+y[x]]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x-\arccos \left (-\frac {c_1}{x}\right )\\ y(x)&\to -x+\arccos \left (-\frac {c_1}{x}\right ) \end{align*}
Sympy. Time used: 2.679 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sin(x + y(x))*Derivative(y(x), x) - x*sin(x + y(x)) + cos(x + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x + \operatorname {acos}{\left (\frac {C_{1}}{x} \right )}, \ y{\left (x \right )} = - x - \operatorname {acos}{\left (\frac {C_{1}}{x} \right )} + 2 \pi \right ] \]