72.8.9 problem 9

Internal problem ID [19493]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 9
Date solved : Thursday, October 02, 2025 at 04:32:16 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x y y^{\prime }&=x^{2} y^{\prime }+y^{2} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 17
ode:=x*y(x)*diff(y(x),x) = y(x)^2+x^2*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-c_1}}{x}\right ) \]
Mathematica. Time used: 1.143 (sec). Leaf size: 25
ode=x*y[x]*D[y[x],x]==x^2*D[y[x],x]+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x W\left (-\frac {e^{-c_1}}{x}\right )\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.287 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) + x*y(x)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x W\left (\frac {C_{1}}{x}\right ) \]