Internal
problem
ID
[19454]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 04:28:24 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=diff(y(x),x) = 2*y(x)/x+x^3/y(x)+x*tan(1/x^2*y(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==2*y[x]/x+x^3/y[x]+x*Tan[y[x]/x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3/y(x) - x*tan(y(x)/x**2) + Derivative(y(x), x) - 2*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)