Internal
problem
ID
[19155]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.6
(Nonhomogeneous
Linear
Systems).
Problems
at
page
436
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 03:38:44 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = x__1(t)+3^(1/2)*x__2(t)+exp(t), diff(x__2(t),t) = 3^(1/2)*x__1(t)-x__2(t)+3^(1/2)*exp(-t)]; dsolve(ode);
ode={D[x1[t],t]==1*x1[t]+Sqrt[3]*x2[t]+Exp[t],D[x2[t],t]==Sqrt[3]*x1[t]-1*x2[t]+Sqrt[3]*Exp[-t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-x__1(t) - sqrt(3)*x__2(t) - exp(t) + Derivative(x__1(t), t),0),Eq(-sqrt(3)*x__1(t) + x__2(t) + Derivative(x__2(t), t) - sqrt(3)*exp(-t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)