Internal
problem
ID
[19034]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
5.
The
Laplace
transform.
Section
5.4
(Solving
differential
equations
with
Laplace
transform).
Problems
at
page
327
Problem
number
:
24
Date
solved
:
Thursday, October 02, 2025 at 03:37:08 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = y__2(t)-y__3(t), diff(y__2(t),t) = y__1(t)+y__3(t)-exp(-t), diff(y__3(t),t) = y__1(t)+y__2(t)+exp(t)]; ic:=[y__1(0) = 1, y__2(0) = 2, y__3(0) = 3]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]==y2[t]-y3[t],D[y2[t],t]==y1[t]+y3[t]-Exp[-t],D[y3[t],t]==y1[t]+y2[t]+Exp[t]}; ic={y1[0]==1,y2[0]==2,y3[0]==3}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-y__2(t) + y__3(t) + Derivative(y__1(t), t),0),Eq(-y__1(t) - y__3(t) + Derivative(y__2(t), t) + exp(-t),0),Eq(-y__1(t) - y__2(t) - exp(t) + Derivative(y__3(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)