70.13.24 problem 24

Internal problem ID [18893]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 24
Date solved : Thursday, October 02, 2025 at 03:32:34 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+9 y^{\prime }-9 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=4*diff(diff(y(x),x),x)+9*diff(y(x),x)-9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-3 x}+c_2 \,{\mathrm e}^{\frac {3 x}{4}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 24
ode=4*D[y[x],{x,2}]+9*D[y[x],x]-9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{3 x/4}+c_2 e^{-3 x} \end{align*}
Sympy. Time used: 0.087 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*y(x) + 9*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{\frac {3 x}{4}} \]