70.9.6 problem 6

Internal problem ID [18803]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.5 (Repeated Eigenvalues). Problems at page 188
Problem number : 6
Date solved : Thursday, October 02, 2025 at 03:31:02 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+\frac {y \left (t \right )}{2}\\ \frac {d}{d t}y \left (t \right )&=-\frac {x \left (t \right )}{2}+y \left (t \right ) \end{align*}
Maple. Time used: 0.106 (sec). Leaf size: 31
ode:=[diff(x(t),t) = 2*x(t)+1/2*y(t), diff(y(t),t) = -1/2*x(t)+y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {3 t}{2}} \left (c_2 t +c_1 \right ) \\ y \left (t \right ) &= -{\mathrm e}^{\frac {3 t}{2}} \left (c_2 t +c_1 -2 c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 53
ode={D[x[t],t]==2*x[t]+1/2*y[t],D[y[t],t]==-1/2*x[t]+y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{2} e^{3 t/2} (c_1 (t+2)+c_2 t)\\ y(t)&\to -\frac {1}{2} e^{3 t/2} ((c_1+c_2) t-2 c_2) \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 51
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - y(t)/2 + Derivative(x(t), t),0),Eq(x(t)/2 - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {C_{2} t e^{\frac {3 t}{2}}}{2} + \left (\frac {C_{1}}{2} + C_{2}\right ) e^{\frac {3 t}{2}}, \ y{\left (t \right )} = - \frac {C_{1} e^{\frac {3 t}{2}}}{2} - \frac {C_{2} t e^{\frac {3 t}{2}}}{2}\right ] \]