70.7.1 problem 1

Internal problem ID [18761]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.3 (Homogeneous linear systems with constant coefficients). Problems at page 165
Problem number : 1
Date solved : Thursday, October 02, 2025 at 03:30:39 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )-2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right )-2 y \left (t \right ) \end{align*}
Maple. Time used: 0.118 (sec). Leaf size: 35
ode:=[diff(x(t),t) = 3*x(t)-2*y(t), diff(y(t),t) = 2*x(t)-2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{-t} \\ y \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{2 t}}{2}+2 c_2 \,{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 73
ode={D[x[t],t]==3*x[t]-2*y[t],D[y[t],t]==2*x[t]-2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{3} e^{-t} \left (c_1 \left (4 e^{3 t}-1\right )-2 c_2 \left (e^{3 t}-1\right )\right )\\ y(t)&\to \frac {1}{3} e^{-t} \left (2 c_1 \left (e^{3 t}-1\right )-c_2 \left (e^{3 t}-4\right )\right ) \end{align*}
Sympy. Time used: 0.048 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-3*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {C_{1} e^{- t}}{2} + 2 C_{2} e^{2 t}, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{2 t}\right ] \]