70.3.19 problem 19

Internal problem ID [18677]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.4 (Differences between linear and nonlinear equations). Problems at page 79
Problem number : 19
Date solved : Thursday, October 02, 2025 at 03:19:59 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=t \left (3-y\right ) y \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(y(t),t) = t*y(t)*(3-y(t)); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {3}{1+3 \,{\mathrm e}^{-\frac {3 t^{2}}{2}} c_1} \]
Mathematica. Time used: 0.145 (sec). Leaf size: 46
ode=D[y[t],t]==t*y[t]*(3-y[t]); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-3) K[1]}dK[1]\&\right ]\left [-\frac {t^2}{2}+c_1\right ]\\ y(t)&\to 0\\ y(t)&\to 3 \end{align*}
Sympy. Time used: 1.003 (sec). Leaf size: 70
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*(3 - y(t))*y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \left [ y{\left (t \right )} = \frac {3 \left (- e^{3 t^{2}} - \sqrt {e^{C_{1} + 3 t^{2}}}\right )}{e^{C_{1}} - e^{3 t^{2}}}, \ y{\left (t \right )} = \frac {3 \left (- e^{3 t^{2}} + \sqrt {e^{C_{1} + 3 t^{2}}}\right )}{e^{C_{1}} - e^{3 t^{2}}}\right ] \]