70.3.7 problem 7

Internal problem ID [18665]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.4 (Differences between linear and nonlinear equations). Problems at page 79
Problem number : 7
Date solved : Thursday, October 02, 2025 at 03:19:18 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {t -y}{2 t +5 y} \end{align*}
Maple. Time used: 0.208 (sec). Leaf size: 57
ode:=diff(y(t),t) = (t-y(t))/(2*t+5*y(t)); 
dsolve(ode,y(t), singsol=all);
 
\[ -\frac {\ln \left (\frac {-t^{2}+3 t y+5 y^{2}}{t^{2}}\right )}{2}+\frac {\sqrt {29}\, \operatorname {arctanh}\left (\frac {\left (10 y+3 t \right ) \sqrt {29}}{29 t}\right )}{29}-\ln \left (t \right )-c_1 = 0 \]
Mathematica. Time used: 0.039 (sec). Leaf size: 63
ode=D[y[t],t]==(t-y[t])/(2*t+5*y[t]); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{58} \left (\left (29+\sqrt {29}\right ) \log \left (-\frac {10 y(t)}{t}+\sqrt {29}-3\right )-\left (\sqrt {29}-29\right ) \log \left (\frac {10 y(t)}{t}+\sqrt {29}+3\right )\right )=-\log (t)+c_1,y(t)\right ] \]
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((-t + y(t))/(2*t + 5*y(t)) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out